A Nonparametric Bayesian Method for Inferring Features From Similarity Judgments
نویسندگان
چکیده
The additive clustering model is widely used to infer the features of a set of stimuli from their similarities, on the assumption that similarity is a weighted linear function of common features. This paper develops a fully Bayesian formulation of the additive clustering model, using methods from nonparametric Bayesian statistics to allow the number of features to vary. We use this to explore several approaches to parameter estimation, showing that the nonparametric Bayesian approach provides a straightforward way to obtain estimates of both the number of features used in producing similarity judgments and their importance.
منابع مشابه
Latent Features in Similarity Judgments: A Nonparametric Bayesian Approach
One of the central problems in cognitive science is determining the mental representations that underlie human inferences. Solutions to this problem often rely on the analysis of subjective similarity judgments, on the assumption that recognizing likenesses between people, objects, and events is crucial to everyday inference. One such solution is provided by the additive clustering model, which...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملVariational Inference for Nonparametric Bayesian Quantile Regression
Quantile regression deals with the problem of computing robust estimators when the conditional mean and standard deviation of the predicted function are inadequate to capture its variability. The technique has an extensive list of applications, including health sciences, ecology and finance. In this work we present a nonparametric method of inferring quantiles and derive a novel Variational Bay...
متن کاملSpectral Chinese Restaurant Processes: Nonparametric Clustering Based on Similarities
We introduce a new nonparametric clustering model which combines the recently proposed distance-dependent Chinese restaurant process (dd-CRP) and non-linear, spectral methods for dimensionality reduction. Our model retains the ability of nonparametric methods to learn the number of clusters from data. At the same time it addresses two key limitations of nonparametric Bayesian methods: modeling ...
متن کامل